Katalog GES

The atmosphere of Pluto as observed by New Horizons

In July 2015, the New Horizons spacecraft flew through the Pluto system at high speed, humanity's first close look at this enigmatic system on the outskirts of our solar system. In a series of papers, the New Horizons team present their analysis of the encounter data downloaded so far: Moore et... Full description

1st Person: G Randall Gladstone
Additional Persons: S Alan Stern; Kimberly Ennico; Catherine B Olkin; Harold A Weaver; Leslie A Young; Michael E Summers; Darrell F Strobel; David P Hinson; Joshua A Kammer; Alex H Parker; Andrew J Steffl; Ivan R Linscott; Joel Wm Parker; Andrew F Cheng; David C Slater; Maarten H Versteeg; Thomas K Greathouse; Kurt D Retherford; Henry Throop; Nathaniel J Cunningham; William W Woods; Kelsi N Singer; Constantine C C Tsang; Eric Schindhelm; Carey M Lisse; Michael L Wong; Yuk L Yung; Xun Zhu; Werner Curdt; Panayotis Lavvas; Eliot F Young; G Leonard Tyler; F Bagenal; W M Grundy; W B McKinnon; J M Moore; J R Spencer; T Andert; J Andrews; M Banks; B Bauer; J Bauman; O S Barnouin; P Bedini; K Beisser; R A Beyer; S Bhaskaran; R P Binzel; E Birath; M Bird; D J Bogan; A Bowman; V J Bray; M Brozovic; C Bryan; M R Buckley; M W Buie; B J Buratti; S S Bushman; A Calloway; B Carcich; S Conard; C A Conrad; J C Cook; D P Cruikshank; O S Custodio; C M Dalle Ore; C Deboy; Z J B Dischner; P Dumont; A M Earle; H A Elliott; J Ercol; C M Ernst; T Finley; S H Flanigan; G Fountain; M J Freeze; J L Green; Y Guo; M Hahn; D P Hamilton; S A Hamilton; J Hanley; A Harch; H M Hart; C B Hersman; A Hill; M E Hill; M E Holdridge; M Horanyi; A D Howard; C J A Howett; C Jackman; R A Jacobson; D E Jennings; H K Kang; D E Kaufmann; P Kollmann; ...
Source: in Science Vol. 351, No. 6279 (2016)
More Articles
Type of Publication: Article
Language: English
Published: 2016
Online: Volltext
  Search for full text
LEADER 12611naa a2202629 c 4500
001 OLC1972823337
003 DE-601
005 20160619114908.0
008 160427s2016 000 0 eng d
016 7 |a 1284101  |2 DE-600 
024 7 |a 10.1126/science.aad8866  |2 doi 
024 8 |a 1774205322 
028 5 2 |a PQ20160610 
035 |a a1429-5889846577046cf20eef53030e7d1b779b14ffb0e9f09fb3e9f181bd4c63edf40 
035 |a 0063888920160000351627900000atmosphereofplutoasobservedbynewhorizons 
040 |b ger  |c GBVCP 
041 0 |a eng 
082 0 9 |a 500 
084 |a phy  |a che  |a mat  |a for  |a spo  |a ibl  |2 natliz 
245 0 4 |a The atmosphere of Pluto as observed by New Horizons 
500 |a Copyright: Copyright © 2016, American Association for the Advancement of Science. 
520 |a In July 2015, the New Horizons spacecraft flew through the Pluto system at high speed, humanity's first close look at this enigmatic system on the outskirts of our solar system. In a series of papers, the New Horizons team present their analysis of the encounter data downloaded so far: Moore et al. present the complex surface features and geology of Pluto and its large moon Charon, including evidence of tectonics, glacial flow, and possible cryovolcanoes. Grundy et al. analyzed the colors and chemical compositions of their surfaces, with ices of H2O, CH4, CO, N2, and NH3 and a reddish material which may be tholins. Gladstone et al. investigated the atmosphere of Pluto, which is colder and more compact than expected and hosts numerous extensive layers of haze. Weaver et al. examined the small moons Styx, Nix, Kerberos, and Hydra, which are irregularly shaped, fast-rotating, and have bright surfaces. Bagenal et al. report how Pluto modifies its space environment, including interactions with the solar wind and a lack of dust in the system. Together, these findings massively increase our understanding of the bodies in the outer solar system. They will underpin the analysis of New Horizons data, which will continue for years to come. Science, this issue pp. 1284, 10.1126/science.aad9189, 10.1126/science.aad8866, 10.1126/science.aae0030, & 10.1126/science.aad9045 For several decades, telescopic observations have shown that Pluto has a complex and intriguing atmosphere. But too little has been known to allow a complete understanding of its global structure and evolution. Major goals of the New Horizons mission included the characterization of the structure and composition of Pluto's atmosphere, as well as its escape rate, and to determine whether Charon has a measurable atmosphere. The New Horizons spacecraft included several instruments that observed Pluto's atmosphere, primarily (i) the Radio Experiment (REX) instrument, which produced near-surface pressure and temperature profiles; (ii) the Alice ultraviolet spectrograph, which gave information on atmospheric composition; and (iii) the Long Range Reconnaissance Imager (LORRI) and Multispectral Visible Imaging Camera (MVIC), which provided images of Pluto's hazes. Together, these instruments have provided data that allow an understanding of the current state of Pluto's atmosphere and its evolution. The REX radio occultation determined Pluto's surface pressure and found a strong temperature inversion, both of which are generally consistent with atmospheric profiles retrieved from Earth-based stellar occultation measurements. The REX data showed near-symmetry between the structure at ingress and egress, as expected from sublimation driven dynamics, so horizontal winds are expected to be weak. The shallow near-surface boundary layer observed at ingress may arise directly from sublimation. The Alice solar occultation showed absorption by methane and nitrogen and revealed the presence of the photochemical products acetylene and ethylene. The observed nitrogen opacity at high altitudes was lower than expected, which is consistent with a cold upper atmosphere. Such low temperatures imply an additional, but as yet unidentified, cooling agent. A globally extensive haze extending to high altitudes, and with numerous embedded thin layers, is seen in the New Horizons images. The haze has a bluish color, suggesting a composition of very small particles. The observed scattering properties of the haze are consistent with a tholin-like composition. Buoyancy waves generated by winds flowing over orography can produce vertically propagating compression and rarefaction waves that may be related to the narrow haze layers. Pluto's cold upper atmosphere means atmospheric escape must occur via slow thermal Jeans' escape. The inferred escape rate of nitrogen is ~10,000 times slower than predicted, whereas that of methane is about the same as predicted. The low nitrogen loss rate is consistent with an undetected Charon atmosphere but possibly inconsistent with sublimation/erosional features seen on Pluto's surface, so that past escape rates may have been much larger at times. Capture of escaping methane and photochemical products by Charon, and subsequent surface chemical reactions, may contribute to the reddish color of its north pole. New Horizons observations have revolutionized our understanding of Pluto's atmosphere. The observations revealed major surprises, such as the unexpectedly cold upper atmosphere and the globally extensive haze layers. The cold upper atmosphere implies much lower escape rates of volatiles from Pluto than predicted and so has important implications for the volatile recycling and the long-term evolution of Pluto's atmosphere. About 20 haze layers are seen from a phase angle of 147°. The layers typically extend horizontally over hundreds of kilometers but are not exactly horizontal. For example, white arrows on the left indicate a layer ~5 km above the surface, which has descended to the surface at the right. Observations made during the New Horizons flyby provide a detailed snapshot of the current state of Pluto's atmosphere. Whereas the lower atmosphere (at altitudes of less than 200 kilometers) is consistent with ground-based stellar occultations, the upper atmosphere is much colder and more compact than indicated by pre-encounter models. Molecular nitrogen (N2) dominates the atmosphere (at altitudes of less than 1800 kilometers or so), whereas methane (CH4), acetylene (C2H2), ethylene (C2H4), and ethane (C2H6) are abundant minor species and likely feed the production of an extensive haze that encompasses Pluto. The cold upper atmosphere shuts off the anticipated enhanced-Jeans, hydrodynamic-like escape of Pluto's atmosphere to space. It is unclear whether the current state of Pluto's atmosphere is representative of its average state--over seasonal or geologic time scales. 
700 0 |a G Randall Gladstone 
700 0 |a S Alan Stern 
700 0 |a Kimberly Ennico 
700 0 |a Catherine B Olkin 
700 0 |a Harold A Weaver 
700 0 |a Leslie A Young 
700 0 |a Michael E Summers 
700 0 |a Darrell F Strobel 
700 0 |a David P Hinson 
700 0 |a Joshua A Kammer 
700 0 |a Alex H Parker 
700 0 |a Andrew J Steffl 
700 0 |a Ivan R Linscott 
700 0 |a Joel Wm Parker 
700 0 |a Andrew F Cheng 
700 0 |a David C Slater 
700 0 |a Maarten H Versteeg 
700 0 |a Thomas K Greathouse 
700 0 |a Kurt D Retherford 
700 0 |a Henry Throop 
700 0 |a Nathaniel J Cunningham 
700 0 |a William W Woods 
700 0 |a Kelsi N Singer 
700 0 |a Constantine C C Tsang 
700 0 |a Eric Schindhelm 
700 0 |a Carey M Lisse 
700 0 |a Michael L Wong 
700 0 |a Yuk L Yung 
700 0 |a Xun Zhu 
700 0 |a Werner Curdt 
700 0 |a Panayotis Lavvas 
700 0 |a Eliot F Young 
700 0 |a G Leonard Tyler 
700 0 |a F Bagenal 
700 0 |a W M Grundy 
700 0 |a W B McKinnon 
700 0 |a J M Moore 
700 0 |a J R Spencer 
700 0 |a T Andert 
700 0 |a J Andrews 
700 0 |a M Banks 
700 0 |a B Bauer 
700 0 |a J Bauman 
700 0 |a O S Barnouin 
700 0 |a P Bedini 
700 0 |a K Beisser 
700 0 |a R A Beyer 
700 0 |a S Bhaskaran 
700 0 |a R P Binzel 
700 0 |a E Birath 
700 0 |a M Bird 
700 0 |a D J Bogan 
700 0 |a A Bowman 
700 0 |a V J Bray 
700 0 |a M Brozovic 
700 0 |a C Bryan 
700 0 |a M R Buckley 
700 0 |a M W Buie 
700 0 |a B J Buratti 
700 0 |a S S Bushman 
700 0 |a A Calloway 
700 0 |a B Carcich 
700 0 |a S Conard 
700 0 |a C A Conrad 
700 0 |a J C Cook 
700 0 |a D P Cruikshank 
700 0 |a O S Custodio 
700 0 |a C M Dalle Ore 
700 0 |a C Deboy 
700 0 |a Z J B Dischner 
700 0 |a P Dumont 
700 0 |a A M Earle 
700 0 |a H A Elliott 
700 0 |a J Ercol 
700 0 |a C M Ernst 
700 0 |a T Finley 
700 0 |a S H Flanigan 
700 0 |a G Fountain 
700 0 |a M J Freeze 
700 0 |a J L Green 
700 0 |a Y Guo 
700 0 |a M Hahn 
700 0 |a D P Hamilton 
700 0 |a S A Hamilton 
700 0 |a J Hanley 
700 0 |a A Harch 
700 0 |a H M Hart 
700 0 |a C B Hersman 
700 0 |a A Hill 
700 0 |a M E Hill 
700 0 |a M E Holdridge 
700 0 |a M Horanyi 
700 0 |a A D Howard 
700 0 |a C J A Howett 
700 0 |a C Jackman 
700 0 |a R A Jacobson 
700 0 |a D E Jennings 
700 0 |a H K Kang 
700 0 |a D E Kaufmann 
700 0 |a P Kollmann 
700 0 |a ... 
773 0 8 |i in  |t Science  |d Washington, DC : AAAS, American Assoc. for the Advancement of Science  |g Vol. 351, No. 6279 (2016)  |q 351:6279  |w (DE-601)12931482X  |x 0036-8075 
856 4 1 |u http://dx.doi.org/10.1126/science.aad8866  |3 Volltext 
856 4 2 |u http://www.ncbi.nlm.nih.gov/pubmed/26989258 
856 4 2 |u http://search.proquest.com/docview/1774205322 
856 4 2 |u http://arxiv.org/abs/1604.05356 
901 |a OLC 
912 |a SYSFLAG_A 
912 |a GBV_OLC 
912 |a SSG-OLC-PHY 
912 |a SSG-OLC-CHE 
912 |a SSG-OLC-MAT 
912 |a SSG-OLC-FOR 
912 |a SSG-OLC-SPO 
912 |a SSG-OLC-IBL 
912 |a GBV_ILN_11 
912 |a GBV_ILN_12 
912 |a GBV_ILN_14 
912 |a GBV_ILN_20 
912 |a GBV_ILN_21 
912 |a GBV_ILN_22 
912 |a GBV_ILN_23 
912 |a GBV_ILN_24 
912 |a GBV_ILN_27 
912 |a GBV_ILN_28 
912 |a GBV_ILN_30 
912 |a GBV_ILN_31 
912 |a GBV_ILN_35 
912 |a GBV_ILN_36 
912 |a GBV_ILN_38 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_46 
912 |a GBV_ILN_47 
912 |a GBV_ILN_48 
912 |a GBV_ILN_55 
912 |a GBV_ILN_59 
912 |a GBV_ILN_60 
912 |a GBV_ILN_62 
912 |a GBV_ILN_65 
912 |a GBV_ILN_69 
912 |a GBV_ILN_70 
912 |a GBV_ILN_73 
912 |a GBV_ILN_80 
912 |a GBV_ILN_92 
912 |a GBV_ILN_101 
912 |a GBV_ILN_103 
912 |a GBV_ILN_107 
912 |a GBV_ILN_108 
912 |a GBV_ILN_110 
912 |a GBV_ILN_112 
912 |a GBV_ILN_120 
912 |a GBV_ILN_124 
912 |a GBV_ILN_125 
912 |a GBV_ILN_131 
912 |a GBV_ILN_170 
912 |a GBV_ILN_171 
912 |a GBV_ILN_179 
912 |a GBV_ILN_181 
912 |a GBV_ILN_184 
912 |a GBV_ILN_189 
912 |a GBV_ILN_190 
912 |a GBV_ILN_193 
912 |a GBV_ILN_209 
912 |a GBV_ILN_211 
912 |a GBV_ILN_219 
912 |a GBV_ILN_221 
912 |a GBV_ILN_222 
912 |a GBV_ILN_229 
912 |a GBV_ILN_236 
912 |a GBV_ILN_251 
912 |a GBV_ILN_252 
912 |a GBV_ILN_254 
912 |a GBV_ILN_256 
912 |a GBV_ILN_259 
912 |a GBV_ILN_263 
912 |a GBV_ILN_277 
912 |a GBV_ILN_279 
912 |a GBV_ILN_302 
912 |a GBV_ILN_304 
912 |a GBV_ILN_305 
912 |a GBV_ILN_306 
912 |a GBV_ILN_307 
912 |a GBV_ILN_310 
912 |a GBV_ILN_314 
912 |a GBV_ILN_317 
912 |a GBV_ILN_318 
912 |a GBV_ILN_320 
912 |a GBV_ILN_324 
912 |a GBV_ILN_328 
912 |a GBV_ILN_333 
912 |a GBV_ILN_600 
912 |a GBV_ILN_601 
912 |a GBV_ILN_647 
912 |a GBV_ILN_700 
912 |a GBV_ILN_701 
912 |a GBV_ILN_754 
950 |a Space telescopes  |a Atmosphere  |a Pluto  |a Earth and Planetary Astrophysics  |a Astrophysics  |2 DE-601 
951 |a AR 
952 |d 351  |j 2016  |e 6279 

Similar Items

Cannot find similar records

Library Services

Search Options

Quick links